
On Patterns for Decentralized Control
in Self-Adaptive Systems

Danny Weyns1, Bradley Schmerl2, Vincenzo Grassi3, Sam Malek4,
Raffaela Mirandola5, Christian Prehofer6, Jochen Wuttke7,

Jesper Andersson1, Holger Giese8, and Karl Göschka9

1 Linnaeus University, Växjö, Sweden
2 Carnegie Mellon University, Pittsburgh, PA, USA

3 Università di Roma TorVergata, Italy
4 George Mason University, Washington DC, USA

5 Politecnico di Milano, Milan, Italy
6 LMU München and Fraunhofer ESK, Germany

7 University of Washington, WA, USA
8 Univerisität Potsdam, Germany

9 Technische Universität Wien, Austria

Abstract. Self-adaptation is typically realized using a control loop. One
prominent approach for organizing a control loop in self-adaptive systems
is by means of four components that are responsible for the primary func-
tions of self-adaptation: Monitor, Analyze, Plan, and Execute, together
forming a MAPE loop. When systems are large, complex, and hetero-
geneous, a single MAPE loop may not be sufficient for managing all
adaptation in a system, so multiple MAPE loops may be introduced. In
self-adaptive systems with multiple MAPE loops, decisions about how to
decentralize each of the MAPE functions must be made. These decisions
involve how and whether the corresponding functions from multiple loops
are to be coordinated (e.g., planning components coordinating to prepare
a plan for an adaptation). To foster comprehension of self-adaptive sys-
tems with multiple MAPE loops and support reuse of known solutions,
it is crucial that we document common design approaches for engineers.
As such systematic knowledge is currently lacking, it is timely to reflect
on these systems to: (a) consolidate the knowledge in this area, and (b)
to develop a systematic approach for describing different types of con-
trol in self-adaptive systems. We contribute with a simple notation for
describing interacting MAPE loops, which we believe helps in achieving
(b), and we use this notation to describe a number of existing patterns
of interacting MAPE loops, to begin to fulfill (a). From our study, we
outline numerous remaining research challenges in this area.

1 Introduction

Self-adaptive systems have the ability to adapt themselves to changes in their exe-
cution environment and internal dynamics, such as response to failure, variability
in available resources, or changing user priorities, to continue to achieve their goals.

R. de Lemos et al. (Eds.): Self-Adaptive Systems, LNCS 7475, pp. 76–107, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On Patterns for Decentralized Control in Self-Adaptive Systems 77

Examples of self-adaptive systems are those that optimize their performance un-
der changing operating conditions, and systems that heal themselves when certain
components fail. Feedback control loops have been identified as crucial elements in
realizing self-adaptation of software systems [46,28,11]. One prominent approach
to organizing a control loop in self-adaptive sytems is bymeans of four components
that are responsible for the primary functions of self-adaptation:Monitor,Analyze,
Plan, and Execute, often referred to as the MAPE loop [28]. When systems are
large, complex, and heterogeneous, a single MAPE loop may not be sufficient for
managing adaptation [9,1]. In such cases, multiple MAPE loops may be employed
that manage different parts of the system. In self-adaptive systems with multiple
MAPE loops, the functions for monitoring, analyzing, planning, and effecting may
be made by multiple components that coordinate with one another. That is, the
functions may be decentralized throughout the multiple MAPE loops. An example
is a self-adaptive system in which multiple planning components coordinate with
one another to prepare a plan for adaptation.

Different patterns of interacting control loops have been used in practice by
centralizing and decentralizing the functions of self-adaption in different ways.
For example, in the Rainbow framework [17], monitoring and execution are del-
egated to the different nodes of the controlled system, whereas analyzing and
planning are centralized. The IBM architectural blueprint [25] organizes MAPE
loops hierarchically, where each level of the hierarchy contains instances of all
four MAPE components. In this setting, higher level MAPE loops determine the
set values for the subordinate MAPE loops. In fully decentralized settings, rel-
atively independent MAPE components coordinate with one another and adapt
the system when needed. An example of this approach is discussed in [18], in
which local component managers on different nodes coordinate with one another
to (re-)configure the structure of the managed system according to the overall
architectural specification.

The existing self-adaptive literature and research, in particular those with a
software engineering perspective, have by and large tackled the problem of man-
aging either local or distributed software systems in a centralized or hierarchical
fashion, e.g., [40,17,25]. While increasing attention is given to decentralized con-
trol of self-adaptive software, e.g., [12,18,36,5,56,48,53], we believe that there is
a dearth of practical and effective techniques to build systems in this fashion.
However, there is an opportunity to build on the work of decentralized self-
adaptation to understand the recurrent coordination patterns and trade-offs, so
that systematic design of self-adaptive systems can be acheived.

To foster comprehension of self-adaptive systems with multiple control loops,
and support reuse of known solutions in this area, it is crucial that we docu-
ment common design approaches for engineers [47]. However, systematic knowl-
edge about interacting control loops for self-adaptive systems is lacking.Therefore,
it is timely to reflect on these systems to: (a) consolidate the knowledge in this area,
and (b) develop a systematic approach for describing different types of control in
self-adaptive systems. In this chapter, we contribute with a simple notation for
describing multiple interacting MAPE loops, which we believe helps in achieving



78 D. Weyns et al.

(b), and we use this notation to describe a number of well-known patterns of in-
teractingMAPE loops, to begin to fulfill (a). Patterns are an established approach
for documenting systematic knowledge in a particular area. A pattern describes a
generic solution for a recurring design problem. The patterns we present are de-
rived from common knowledge in the field of self-adaptation and experiences of
the authors with building self-adaptive systems. In reflecting about these patterns
and the different ways of organizing self-adaptive control loops, we have identified
a number of further research challenges that together form a roadmap for achiev-
ing a more principled approach to designing decentralized self-adaptive systems.
This roadmap is outlined in the conclusion of this chapter.

2 Terminology

Before we elaborate on the notation for interacting MAPE loops and the pat-
terns, we first clarify terminology. In particular, we (1) explain the distinction
between managed and managing subsystems, the two constituent parts of a self-
adaptive system, and (2) clarify how we use the terms distribution and decentral-
ization in this chapter, two terms that are often mixed up by software engineers
in the community of self-adaptive systems, leading to a lot of confusion.

2.1 Managed and Managing Subsystem

As shown in Figure 1, a self-adaptive system is situated in an environment. We
use the general terms managed subsystem and managing subsystem to denote
the constituent parts of a self-adaptive software system. Other authors make
a similar distinction. For example, in the Rainbow framework [17], the man-
aged subsystem maps to the system layer and the managing subsystem to the
architecture layer. The authors in [43] use core function to refer to the man-
aged subsystem and adaptation engine to refer to the managing subsystem. In
FORMS [57], the managed subsystem corresponds to the base-level subsystem,
and the managing subsystem to the reflective subsystem.

The environment refers to the part of the external world with which the self-
adaptive system interacts, and in which the effects of the system will be observed
and evaluated [26]. The environment may correspond to both physical and soft-
ware entities. For example, the environment of a robotic system includes physical
entities like obstacles on the robot’s path and other robots, as well as external
cameras and corresponding software drivers. The distinction between the envi-
ronment and the self-adaptive system is made based on the extent of control. For
instance, in the robotic system, the self-adaptive system may interface with the
mountable camera sensor, but since it does not manage (adapt) its functionality,
the camera is considered to be part of the environment.

The managed subsystem comprises the application logic that provides the
system’s domain functionality. For instance, in the case of robots, navigation of
a robot or transporting loads is performed by the managed subsystem. To realize
its functionality, the managed subsystem monitors and affects the environment.



On Patterns for Decentralized Control in Self-Adaptive Systems 79

Fig. 1. Constituent parts of a self-adaptive software system

To support adaptations, the managed subsystem has to provide support for
monitoring and executing adaptations.

The managing subsystem manages the managed subsystem. The managing
subsystem comprises the adaptation logic that deals with one or more concerns.
For instance, a robot may be equipped with a managing subsystem that allows
adaption of its navigation strategy based on the changing operation conditions,
e.g., changing task load, or reduced bandwidth for communication. To realize
its goals, the managing subsystem monitors the environment and the managed
subsystem and adapts the latter when necessary.

Other layers can be added to the system where higher-level managing subsys-
tems manage underlying subsystems, which can be managing subsystems them-
selves. For instance, consider a robot that not only has the ability to adapt its
navigation strategy, but also to adapt the way such adaptation decisions are
made, e.g., based on remaining energy level of the battery. In such an instance,
the subsystem responsible for managing the battery level of the robot must co-
ordinate with the subsystem for managing navigation and other robotics tasks,
so that the robot does not fail entirely.

It is important to note that the managed and managing subsystems can be
interwoven, as is the case when adaptation logic is dispersed throughout the
functional logic the system. In such systems, it is not possible to easily reason
about adaptation logic separately from system logic, meaning it is difficult to
provide assurances or guarantees on the behavior of the system to changes in
the environment. Another emerging approach to self-adaptation is in the field
of self-organizing systems, where adaptation comes entirely from decisions made
locally by components of the system. In such systems, the global properties of the



80 D. Weyns et al.

adaptation (e.g., performance, utility to the user, or failure properties) are also
difficult to reason about, though there is some research that attempts to address
these concerns (for example, in [51], the authors present a statistical model that
allows the convergence of global system objectives based on local agent behaviors
to be analyzed, predicted, and controlled). In this chapter, we focus on how
to organize self-adaptive systems where both subsystems are separate entities,
following the principle of disciplined split [34] (or separation of concerns), which
has been a main focus in the self-adaptive research community [55].

2.2 Distribution and Decentralization

Textbooks on distributed systems, e.g., [49], typically differentiate between: (1)
centralized data in contrast to distributed, partitioned, and replicated data, (2)
centralized services in contrast to distributed, partitioned, and replicated ser-
vices, and (3) centralized algorithms in contrast to decentralized algorithms.

In this chapter, we use distribution to refer to the deployment of the software of
a self-adaptive system to hardware. As such, distribution of a self-adaptive system
refers to the deployment of the software of both the managed subsystem and the
managing subsystem. A distributed self-adaptive system consists of multiple soft-
ware components that are deployed onmultiple nodes connected via somenetwork.
The opposite of a distributed self-adaptive system is software that is deployed on a
single node. The managed and managing subsystems can be deployed on the same
or on different nodes. For example, the software components of a managed subsys-
tem may be deployed on a set of nodes, while the software of the managing system
may be deployed on one dedicated node. Thus, while the managed system may be
distributed, it is possible that the managing system is not.

With decentralization, we refer to how control decisions in a self-adaptive soft-
ware system are coordinated among different components, independent of how
those control components are physically distributed. In particular, we consider
decentralization at the level of the four activities of self-adaption: monitoring,
analyzing, planning, and execution. Decentralization implies a type of control in
which multiple components responsible for one of the activities of self-adaption
perform their functionality locally, but coordinated with with peers. Typically,
such decentralized coordination is organized as follows: monitoring components
coordinate with other monitoring components to collect the knowledge required
for subsequent analysis; analysis components coordinate to decide whether the
conditions for a particular adaptation hold; multiple planning components coor-
dinate to plan an adaptation; and multiple execution components coordinate to
execute an adaptation, e.g., they have to synchronize their adaptation actions.
Decentralized control contrasts with central control. In central control, a single
component exists (for one of the activities of self-adaptation) that performs its
function. For example, analysis and planning is centralized in a self-adaptive
system if this system has one analysis and one planning component that decides
about when and how to perform an adaptation.

From this perspective, the functions of adaptation in a self-adaptive system
(monitoring, analysis, planning, execution) can in principle be centralized or



On Patterns for Decentralized Control in Self-Adaptive Systems 81

decentralized, independently of how the software of the managed and managing
subsystems are deployed. However, in practice, when the managed software is
deployed on a single node, the managing software will often also be deployed on
that node and the adaptation functions are typically centralized. Similarly, fully
decentralized adaptation functions typically go hand in hand with distribution
of the software of the managed and managing subsystems. Between these two
extremes, a variety of different ways to organize the functions of adaptation
exist. The next two sections of this chapter elaborate on this.

3 A Notation for MAPE Patterns

As mentioned in the introduction, the adaptation logic (managed subsystem)
typically involves feedback control loops with four key activities: Monitor (col-
lect), Analyze (determine), Plan (prepare), and Execute (act), defining the clas-
sic MAPE control loop [28]. Given the central role control loops play in the way
we conceptualize, design, and implement self-adaptive systems, [9] argues that
“the design [of self-adaptive systems] must make the interactions of control loops
explicit and expose how these interactions are handled”.

Several authors, e.g. [46,38,9], have argued that existing approaches to describe
softwaremodels are not well suited to represent control loops in the design. In [23],
the authors introduce a UML profile for modeling control loops that extends UML
modeling concepts. This approach allows control loops to become first-class ele-
ments of the design. The proposed UML profile supports modeling and reasoning
about interactions between coarse-grained “controllers,”while in this workwe aim
to model finer-grained interactions between the components of control loops.

In this section, we introduce a graphical notation to explicitly capture inter-
acting MAPE loops by considering the control loop components M, A, P, and
E, and their interactions. We call a recurring structure of interacting MAPE
components a MAPE pattern.

In order to describe different MAPE patterns properly and overcome complex-
ity, we introduce a unified, simple graphical representation based on a condensed
notation of a MAPE loop as depicted in Figure 2. The key for this figure and the
other figures with interactingMAPE loops in this chapter is described in Figure 3.

We distinguish between a MAPE pattern and an instance of the pattern. The
former describes the abstract structure of the MAPE pattern in terms of abstract
groups ofMAPEcomponents, the type of interactions betweenMAPEcomponents
between groups, and the interactions with the managed subsystem. The latter de-
scribes the concrete structure of the pattern for one particular configuration.

A group of MAPE components expresses a logical collection of MAPE compo-
nents that may occur once or more in the pattern. The annotated cardinalities of
the interactions between the groups of MAPE components determine the allowed
occurrences of the different groups in the pattern. For the example pattern shown
in Figure 2, there is only one occurrence of the group with fourMAPE components
allowed, while there are many occurrences possible for the group with only the M
and E component (in the example shown at the bottom of Figure 2, there are two



82 D. Weyns et al.

Fig. 2. Top: An example of a MAPE pattern. Bottom: an instance of the pattern in
one concrete configuration.

Fig. 3. Key for patterns and instances

such occurrences). Notationally, groups partition a pattern so that it is easier to
see which parts of the MAPE loop are being decentralized.

We differentiate the following types of interactions:

– Managed-managing subsystem interactions: these are the interactions be-
tween M components and the managed subsystem for monitoring purposes,
and between E components and the managed subsystem for performing
adaptations. Managed subsystem is the application logic that provides the



On Patterns for Decentralized Control in Self-Adaptive Systems 83

system’s domain functionality, or it can be a group of MAPE components
that itself is subject of adaptation. Note that not every M and E component
has to interact with the managed system. For example, in the instance shown
in Figure 2, the M component in the top group is responsible for providing
the required information about the managed subsystem to allow the A com-
ponent to decide about adaptations. However, the actual collection of this
information is delegated to M components that may reside at the different
nodes where the managed subsystem is deployed.

– Inter-component interactions: these are the interactions between different
types of MAPE components. In a typical MAPE loop, M interacts with A,
A with P, and P with E. However, other interactions paths may be possible,
such as subloops within a MAPE loop as discussed in [53].

– Intra-component interactions: these are the interactions between MAPE
components of the same type, e.g., interactions between M components. Two
important subtypes of this kind of interactions are delegation (as in the ex-
ample pattern of Figure 2) and coordination. Coordination is used when
components of the same type, but from different MAPE loops, interact with
one another. Examples are two A components that have to coordinate to de-
cide whether an adaptation should be applied, and two E components that
have to synchronize the actions of an ongoing adaptation.

There are a number of important aspects of interacting MAPE loops that we do
not consider explicitly in the notation and the patterns described in this chap-
ter. First, we abstract away the knowledge aspect of MAPE components and
how this knowledge is used and shared by the MAPE components. It is clear
that knowledge exchange is an important design aspect of interacting MAPE
loops and may have an impact on the applicability of the pattern. Second, we do
not consider the distribution of the MAPE components and the communication
resulting from actual deployment based on a particular network topology and
supporting communication infrastructure (message oriented, publish-subscribe,
etc.). Different deployments of the MAPE components may be possible, com-
bined with different types of communication infrastructure, each with its par-
ticular benefits and trade-offs. We refrained from including these concerns in
the patterns for the following reasons: (1) the treatment of knowledge heavily
depends on the characteristics of the domain (e.g., the degree of cooperation or
competition in the system, the sensitivity of particular knowledge, etc.), (2) the
deployment of MAPE loops depends on constraints imposed by the underlying
infrastructure (e.g., type of network, use of a particular middleware, etc.), and
(3) including knowledge and deployment as first-class in the patterns would sig-
nificantly expand the design space for each pattern and increase the complexity,
and make less clear the interactions between the MAPE components, within and
across MAPE loops. We touch upon a number of aspects of knowledge storage
and exchange in section 6.



84 D. Weyns et al.

4 Patterns for Decentralized Control

We now present a selection of MAPE patterns that model different types of in-
teracting MAPE loops with different degrees of decentralization. These patterns
are not intended to be a complete enumeration of all possible configurations. In
fact, the presented patterns emerged from the experiences of the authors with
building self-adaptive systems, and discussions at a Dagstuhl seminar [44]. We
use a standard template to present the patterns, consisting of the following parts:
problem/motivation, solution, consequences, and examples.

We start by presenting two patterns, coordinated control and information
sharing, both based on a fully decentralized approach that represents the an-
tithesis with respect to a single centralized control loop. Both these patterns
are based on a “flat” distribution model, where a multiplicity of peer MAPE
loops operates in parallel to manage the overall system self-adaptation. Then,
we present three other patterns, master/slave, regional planning, and hierar-
chical control, that are based instead on a “hierarchical” distribution model,
where higher level MAPE components control subordinate MAPE components.
The hierarchy generally reflects a separation of concerns among different control
loops. These three patterns can be considered as intermediate points between
fully decentralized and centralized control, as the root of the hierarchy basically
constitutes a centralization point.

4.1 Coordinated Control Pattern

Problem/Motivation. In many cases, centralizing control for self-adaptation
is simply not feasible. Among the possible reasons for this include: a) an
inherent distribution of information in the system makes it too costly or even
infeasible to collect all the data required for adaptation; b) due to the scale
of the system the cost to process all the information at one place may be too
high; and c) the system spans multiple ownership domains with no trustworthy
authority to control adaptations. However, support for adaptation to achieve
certain quality attributes is still desired. For example, multiple data centers
still require guarantees that service-level agreements and legal regulations can
be met, or control systems for managing traffic in a metropolitan area must
coordinate to grant passage to emergency vehicles. In such cases, there may be
no obvious way to organize control so that one part of the system has authority
over another. In such a case, each control loop must coordinate with its peers
to reach some joint decision about how to adapt.

Solution. A possible solution to overcome these problems is to decentralize
the four MAPE activities. A MAPE loop is associated with each part of the
managed system that is under its direct control. What characterizes this pattern
is that basically all the M, A, P and E components of each loop coordinate their
operation with corresponding peers of other loops. For example, A components
exchange information to make a decision about the need for an adaptation,
E components exchange messages to synchronize adaptation actions, etc. The



On Patterns for Decentralized Control in Self-Adaptive Systems 85

Fig. 4. Top: coordinated control pattern. Bottom: a possible instance.

interactions are typically localized, so that each component directly interacts
with only a subset of its peers.

Figure 4 shows the decentralized control pattern and illustrates it for a con-
crete configuration. The pattern consists of one abstract group of MAPE compo-
nents that contains all four components. The abstract group can be instantiated
an arbitrary number of times. The pattern uses the standard sequence of inter-
actions between the components within a MAPE loop, but variations may be
possible. MAPE components of different MAPE loops can interact with peers to
share particular information or coordinate their actions. The cardinalities of the
intra-component interactions define the connectivity among MAPE components
of the same type, that is, each component can interact with an arbitrary number
of components of its own type.

The instance diagram at the bottom of Figure 4 shows a concrete instantia-
tion of the pattern with four groups of MAPE components. Even if the pattern
allows for a full connection among all peers, in a typical scenario, interactions
among the same type of MAPE components will be localized.

Consequences. Decentralized control has the potential of good scalability
with respect to communication and computation, depending on the coupling
degree among peer components, and the number of other peers each MAPE
component has to explicitly interact with. For systems in which adaptations
can be performed based on local interactions between MAPE components, the
communication overhead is limited to interactions with local peers. Further-
more, the computational burden is spread over the nodes. Decentralization
may also contribute to improving robustness as there is no single point of
failure. Decentralization of control may be the only option in cases where no
single entity has the knowledge or authority to coordinate adaptations across
a set of managed subsystems. There are a number of potential downsides of



86 D. Weyns et al.

decentralized control as well. When coordination is required between MAPE
components of many nodes, scalability may be compromised. The cost for
reaching consensus about suitable adaptation actions may be high (in terms
of communication and/or timing). Decentralized control may cause prob-
lems with ensuring consistency of adaptations. Furthermore, it may lead to
sub-optimal adaptation decisions and actions, from the overall system viewpoint.

Examples. An example application that can be characterized as an implemen-
tation of the coordinated control pattern is presented in [18]. A component
manager located at each node of a distributed application implements a logical
control loop. The set of component managers cooperate to preserve some ar-
chitectural constraints under certain events. All component managers rely on a
group membership service and reliable broadcast to achieve a consistent view of
the knowledge accumulated by their local M and A activities. Moreover, adap-
tation actions planned and executed by local P and E activities are globally
coordinated by means of a totally ordered broadcast that implements a dis-
tributed locking scheme. As pointed out by the authors, the adopted mechanism
to achieve global coordination requires explicit interaction among all MAPE
loops. The resulting overhead thus limits the scalability of the proposed control
architecture.

4.2 Information Sharing Pattern

Problem/Motivation. A software system consisting of a (potentially large)
set of loosely connected components requires support for adaptation to maintain
a particular concern or quality attribute. The components of the system are
deployed on different nodes. Each part of the system can adapt locally, but
requires information about the state of other nodes in the system because a
local adaptation may impact these other nodes (e.g., on some quality attribute
of those operations). However, apart from information sharing, nodes do not
need to coordinate other adaptation activities. For example, in a sensor network
for environmental monitoring (e.g., habitat monitoring), certain nodes may be
equipped with sensors to detect a fire. In case a node detects a fire, it produces
an alarm signal that can be spread effectively through the network using a
smart gossip algorithm. Upon receiving the signal, nodes can activate a local
adaptation procedure to anticipate disaster.

Solution. In contrast to the coordinated control pattern, the information shar-
ing pattern restricts the inter-component type interactions of decentralized con-
trol to monitor (M) components only, as depicted in Figure 5. In particular, in
this pattern only M components communicate with one another, while the A,
P, and E components of each loop operate independently of their peers. The
interactions are typically localized, that is, M components exchange informa-
tion only with nodes in their (physical or logical) context. Thus, some infor-
mation collected about the status of the managed systems is shared among the
MAPE loops that allows local analysis, planning, and execution of adaptations



On Patterns for Decentralized Control in Self-Adaptive Systems 87

Fig. 5. Top: information sharing pattern. Bottom: concrete instance of the pattern.

without further coordination. Information sharing about the system state may
be realized by explicit interactions among peer M components, or by implicit
interactions where each M component independently monitors state information
that is affected by the behavior of other nodes.

Figure 5 shows the information sharing pattern and illustrates it for a concrete
configuration. The pattern consists of one abstract group of MAPE components
containing all four components that can be instantiated an arbitrary number of
times. At the inter-loop level, only M components can interact with an arbitrary
number of peers to share particular information.

The instance diagram at the bottom of Figure 5 shows a concrete instanti-
ation of the pattern with four groups of MAPE components. In this particular
example, two M components interact with two peers (top left and bottom
right), while the two other M components only interact with one peer.

Consequences. From a scalability perspective, information sharingmay produce
potentially higher benefits than coordinated control. Indeed, the less stringent in-
teraction requirements (limited to M components only) may result in solutions
that scale even better with respect to communication. However, this requires that
the traffic between M components, in particular in case of explicit interactions,
is limited in scope and volume. Another potential benefit is that since P, A, and
E components can act locally without the need for coordination, this may lead
to more timely decisions and execution of adaptations. On the other hand, the
reduced coordination may increase locally optimal objectives, but at the cost of
globally optimal ones. In the worst case, local decisions may conflict with one an-
other, resulting in perpetual adaptation of the system, thus wasting resources and
having adverse effect on the system’s availability and stability.

Information sharing can be considered a special case of the coordinated
control pattern discussed above, where the interactions among peer A, P and
E components have been completely dropped. However, while the coordinated



88 D. Weyns et al.

control pattern aims at directly achieving some regional or global objective
through explicit cooperation among all types of MAPE components, the
information sharing pattern adopts a different perspective, where achieving the
global objective is less direct, because decisions are made locally rather than in
a coordinated fashion. For this reason we prefer to give a “first-class citizen”
status to this pattern in our list of alternative patterns.

Examples. The self-healing traffic monitoring system presented in [56] is an ex-
ample in which the information sharing pattern is used to support self-healing in
a traffic monitoring system by means of explicit state information sharing. The
overall system consists of a set of cameras distributed along roads that are used
to detect and report traffic jams (for example to a traffic light control system).
A local traffic monitoring system deployed on each camera (i.e., the managed
subsystem) monitors the traffic conditions in its viewing range. When a traffic
jam is detected the local traffic monitoring systems form a dynamic organiza-
tion with neighboring local traffic monitoring systems that span the range of the
traffic jam. One of the monitoring systems is responsible for reporting the traffic
jam to interested clients. To make the system resilient to camera failures, a self-
healing subsystem is added to each local traffic monitoring system. To this end,
the self-healing subsystems exchange information with self-healing subsystems
on local cameras about their status using a ping-echo protocol. When a failure
is detected (one of the self-healing subsystems does not respond with an echo
message), the self-healing subsystem locally performs some analysis and plan-
ning activities that trigger local adaptation actions. Examples are removing the
reference to a failed camera from the set of neighbors, and changing the dynamic
organization of a set of monitoring cameras.

Another example of information sharing is described in [48] that aims to tackle
the scalability problem of the group membership service and reliable broadcast
used to preserve architectural constraints among distributed nodes as described
in [18]. In this work, a gossip protocol is used to exchange information between
nodes to support local adaptations. The authors show that the approach achieves
a fault-tolerant and scalable solution to exchange information regarding the com-
ponent configuration.

The two patterns identified and described so far are characterized by the
introduction of different degrees of decentralization, but are both driven by a
flat separation of concerns model, which places the different MAPE loops at the
same conceptual/abstraction level. In other words, they play analogous roles on
the different parts of the overall managed system they are directly responsible
for. In the following we describe three hierarchical control patterns, where MAPE
loops at different levels play different roles, with different responsibility levels.

4.3 Master/Slave Pattern

Problem/Motivation. There is a need to adapt a distributed software system
for some concern. Monitoring and adaptations of the software needs to be
done locally at each node, for example because of the high cost of transferring



On Patterns for Decentralized Control in Self-Adaptive Systems 89

monitored data or because of the specificity of local adaptations. On the
other hand, there is a need to provide global guarantees, predictability, and
consistency about the state of the distributed system and its adaptations. For
example, a central controller in an automated logistic systems (with cranes,
conveyor belts, etc.) may rely on locally collected knowledge of machine software
or their environment (which may include complex processing performed by M
components) to trigger some of the machines to change their work mode (which
may involve complex manipulations of the machine software performed by E
components).

Solution. This pattern organizes the adaptation logic by creating a hierarchi-
cal relationship between one (centralized) master component that is responsible
for the analysis and planning of adaptations (A and P activities) and multiple
slave components that are responsible for monitoring and execution (M and E
activities), see Figure 6. The pattern consists of two abstract groups of MAPE
components. There is a single instance of the group with a P and an A compo-
nent, and there can be an arbitrary number of instances of the group with an M
and an E component. Each M interacts with the A component and P interacts
with each E component. As such the pattern supports the typical flow of inter-
component interactions of a MAPE loop, but with multiple instances of M and
E components.

The M components of the slaves monitor the status of the local managed
subsystems and possibly their execution environment and send the relevant in-
formation to the A component of the master. A, in turn, examines the collected
information and coordinates with the P component, when a problem arises that
requires an adaptation of local managed systems. The P component then puts
together a plan to resolve the problem and coordinates with the E components
on the slaves to execute the actions to the local managed subsystems.

The instance diagram at the bottom of Figure 6 shows a concrete instantia-
tion of the pattern with three slaves.

Consequences. The master/slave pattern is a suitable solution for application
scenarios in which slave control components need to process monitored infor-
mation to derive the required data allowing centralized decision making, and
execute local adaptation (probably based on higher-level adaptation instruc-
tions). On the positive side, centralizing the A and P components facilitates
the implementation of efficient algorithms for analysis and planning aimed
at achieving global objectives and guarantees. However, sending the collected
information to the master component and distributing the adaptation actions
may impose a significant communication overhead. Moreover, the solution may
be problematic in case of large-scale distributed systems where the master may
become a bottleneck. Finally, the master component continues to represent a
single point of failure.



90 D. Weyns et al.

Fig. 6. Top: master/slave pattern. Bottom: concrete instance of the pattern.

Examples. The control architecture proposed in the RESERVOIR project
[50,16] is an example of the master/slave pattern. The architecture is proposed
in the context of a virtualized data center, where virtual execution environments
are offered on top of a set of distributed physical servers. To meet the SLAs nego-
tiated with the data center users, the control system monitors the system status
(e.g., utilization degree of physical resources) through a set of monitors located
at the different servers. A central master controller collects and analyzes these
data, and plans suitable adaptation actions (that include, for example, changing
the balance of the time slice among different virtual environments hosted by the
same server, or live-migrating processes among physically separated servers).

The master/slave pattern is also at the basis of the control architecture for the
Znn.com example system [10], developed according to the Rainbow framework
[17]. The Znn.com system implements a news service that provides multimedia
news content to its users, and is architected as a dynamically variable number of
servers that serve clients requests by accessing a backend database. According
to the Rainbow framework, the control system of Znn.com uses a distributed set
of probes and gauges to monitor the system status. Collected data is centrally
analyzed by an architecture evaluator that detects possible problems, while an
adaptation manager decides on the best adaptation whose goal, in this example,
is to keep the response time within a given threshold. The execution of adap-
tation actions (that include changing the number of active servers, and varying
the “fidelity” of the provide responses) is then delegated to a set of distributed
effectors driven by a strategy executor.



On Patterns for Decentralized Control in Self-Adaptive Systems 91

4.4 Regional Planning Pattern

Problem/Motivation. Different loosely coupled parts of software (regions) of
a complex integrated software system want to realize local adaptations (within
a region) as well as adaptations that cross the boundaries of the different parts
(between regions). A typical scenario is a federated cloud infrastructure where
adaptations within regions may aim to optimize resource allocation, while the
objective of adaptations between regions may be delegation of certain loads
under particular conditions (that owners of regions may not want to expose).
Another setting is a supply chain management system where partners in the
chain have certain local adaptation objectives, while adaptations between part-
ners or system-wide adaptations may aim to achieve some global utility objective.

Solution. Regional planning provides one P component (a regional planner) for
each region. A regional planner collects the necessary information from the un-
derlying subsystems under its supervision to plan adaptations. Regional planners
interact with one another to coordinate adaptions that span multiple regions.

Figure 7 shows the regional planner pattern and illustrates it for a concrete
configuration. The pattern consists of two abstract groups of MAPE components,
which both can occur an arbitrary number of times. The first group contains M,
A, and E components. The second group contains only a P component. Inter-
component type interactions follow the logical flow of a MAPE loop. Intra-
component type interactions are restricted to P components.

The instance diagram at the bottom of Figure 7 shows a concrete instan-
tiation of the pattern with two regional planners. For each region, the M
components monitor the status of local managed subsystems and possibly
the execution environment, the local A components analyze the collected
information, and report the analysis results to the associated regional planner.
The regional planner may then decide to perform a local adaptation (i.e.,
within the region), or regional planners may interact with one another to plan
adaptations that span the two regions. Once the planners agree on a plan
they can put the adaptations to action by activating the E components of the
respective component groups involved in the adaptation.

Consequences. Regional planner enables a layered separation of concerns
among different MAPE loops within a single ownership domain, where several
MAPE loops delegate the planning function to a higher level component. For
systems that cross the boundaries of ownership domains, regional planner en-
ables a further (flat) separation of concerns for the planning function, where
each planner is responsible for the planning of adaptations in its region. Local
analysis of monitored data may reduce the amount of data and frequency of
interactions with the planner. A downside of regional planner may be a lack
of efficient adaptations. Aggregating the results of local analysis and coordinat-
ing the planning of adaptations may incur considerable overhead. Moreover, the
pattern may require very detailed planning of the execution of adaptations as it
does not support runtime coordination between E components.



92 D. Weyns et al.

Fig. 7. Top: regional planner pattern. Bottom: concrete instance of the pattern with
two regions.

Examples. The MOSES framework [8] is an example that instantiates the re-
gional planner pattern. Within the context of service-oriented systems, the goal of
MOSES is to provide a brokering service that supports runtime adaptation of com-
posite services offered to multiple users with different service levels. The MOSES
framework consists of a set of distributed monitoring components (WS Monitor
and QoS Monitor components) that collect data about the availability and qual-
ity of service of different pools of candidate services that can be used to build the
composite service managed by MOSES. Collected data are locally analyzed. The
result of the analysis can trigger the calculation of a new plan by a centralized plan-
ning component (Optimization engine) that calculates a new abstract-to-concrete
services binding policy, that is then realized at the endpoints.

The Deployment Improvement Framework [35] provides the ability to deter-
mine the optimal deployment of a software system at runtime and effecting it
through runtime redeployment and adaptation of its components. This frame-
work has been realized using a regional planner pattern, supporting redeploy-
ment in mobile and pervasive computing environments. In this particular case,



On Patterns for Decentralized Control in Self-Adaptive Systems 93

each host has a decentralized planner (i.e., a regional planner) that only man-
ages a single instance of a group of M, A, E components. Furthermore, each
host has a local monitor, local analyzer, and local effector that are responsible
for the monitoring, assessing changes in the monitored parameters, and rede-
ployment of the components on the host they reside. Each host has a model
that contains some subset of the system’s overall model, populated by the data
received from the local monitor and the model of the hosts to which this host
is connected. The local analyzer on each host determines when the conditions
for an improved deployment architecture occur, based on the local model. The
decentralized planner then synchronizes with its remote counterparts to find a
common solution. If the planners agree, the improved deployment architecture
is effected by the local effectors.

4.5 Hierarchical Control Pattern

Problem/Motivation. The control architecture for a complex distributed
system may itself become a complex system that needs to be adapted. In this
case it is often necessary to consider multiple control loops within the same
application. The loops can work at different time scales and manage different
kind of resources, and resources with different localities. However, in this
context, control loops need to interact and coordinate actions to avoid conflicts
and provide certain guarantees about adaptations. The problem is then how
to separate concerns to manage this complexity? Examples of such systems
are: a) within a single data center, higher level control loops are responsible for
achieving power consumption or workload goals, whereas local control loops
manage workflow distribution between localized subsets of the nodes, and
b) adaptation in pervasive computing environments could be organized into
controllers that manage adaptation of human tasks as a user’s goals change (in
the order of minutes) and controllers that manage particular instances of these
tasks to provide fault tolerance (in the order of seconds).

Solution. The hierarchical control pattern provides a layered separation of con-
cerns to manage the complexity of self-adaptation. This pattern structures the
adaptation logic as a hierarchy of MAPE loops. Different layers typically focus
on different concerns at different levels of abstraction, and may operate at differ-
ent time scales. Loops at lower layers operate at a short time scale, guaranteeing
timely adaptation concerning the part of the system under their direct control.
Higher levels operate at a longer time scale with a more global/strategic vision.
MAPE loops at the bottom layer are directly concerned with different parts of
the managed subsystem. MAPE loops at intermediate layers are concerned with
the adaptation layers beneath. Finally, the MAPE loop at the top is concerned
with the overall adaptation objectives of the system.

Figure 8 shows the hierarchical control pattern and illustrates it for a concrete
configuration. The pattern is shown for a hierarchy of three layers, but more
intermediate layers are possible. The M and E components of abstract groups
at the bottom layer directly interact with the managed subsystem. M and E



94 D. Weyns et al.

Fig. 8. Top: hierarchical control pattern. Bottom: concrete instance of the pattern.

components of abstract groups of higher-level layers interact with groups at the
layers beneath.

The instance diagram at the bottom shows a concrete instantiation of the
hierarchical control pattern. In this particular example, the hierarchy consists
of three layers with two intermediate MAPE loops, one of them managing two
subordinate loops, the other one managing a single loop.

Consequences. The hierarchical control pattern enables adaptation logic to
be structured so that the complexity of self-adaptation can be managed. The
hierarchical structure allows bottom layer control loops to focus on concrete
adaptation objectives while higher level control loops can take increasingly
broader perspectives. This corresponds to the layered organization of self-
adaptation as proposed in [31]. However, there are a number of potential
trade-offs with hierarchical control. The hierarchical decomposition of the
adaptation concerns and the allocation of these concerns to different control
loops might be difficult to achieve, in particular when goals interfere with one
another. Moreover, it is known from behavior-based architectures [2] that the
design and management of hierarchies with multiple layers can become very
complex. As a result, there might be no guarantee that the overall solution
meets the specifications.



On Patterns for Decentralized Control in Self-Adaptive Systems 95

Examples. A classic example of hierarchical control of adaption is the IBM
architectural blueprint [25]. This approach consists of autonomic managers that
add self-* properties to resources and these managers are, in turn, managed
by other autonomic managers. At the highest level a manager takes high-level
policies from users and delegates these throughout the hierarchy of autonomic
managers. [4] discusses how the Autonomic Computing Reference Architecture
(ACRA) can be used to orchestrate a set of autonomic managers that share
knowledge sources to realize adaptations of managed resources.

The use of multiple control loops is proposed also in [33], where Litoiu et
al. propose a hierarchical framework to deal with autonomic systems where it is
possible to consider different time scales and different kind of managed resources.

Another example of the application of the hierarchical pattern can be found
in [27]. In this work, the authors present Mistral, a multi-level hierarchical self-
adaptive system. Specifically, Mistral is presented for a large data center envi-
ronment and deployed in the form of a hierarchical control scheme with multiple
instances of Mistral controllers managing different subsets of hosts and applica-
tions and operating at different time-scales. The controllers at the lower level
manage a small number of machines and the applications hosted on them, while
at the next higher level, a controller manages machines owned by multiple lower
level controllers. Mistral reconfigures the system when variations in the moni-
tored workload are detected and the adaptation actions are selected according
to a predefined utility function.

5 Drivers for Selecting Control Schemas for Adaptation

So far we have outlined a set of patterns for decentralizing self-adaptive control
loops, discussed forces that express conflicts among concerns when applying the
patterns, and described how the patterns have been used by existing self-adaptive
systems. Based on these insights, we discuss some of the drivers that should be
considered by designers of self adaptive systems when choosing a MAPE pattern.
As with any design, it is not possible to fulfill all requirements of all stakeholders
with any one pattern. This means that choosing a pattern will depend on the
relative importance of the requirements that stakeholders place on the managed
system.

In the literature, it is usually quality concerns such as fault handling, efficiency,
resource consumption, and load balancing that are the main goal of, and thus
the main drivers for, self-adaptive solutions [24,52,55]. Due to the variability of
domains and requirements, we cannot give an exhaustive list of how requirements
may influence the choice of control mechanisms. Rather, we discuss in a few
examples how certain kinds of requirements may impact this choice.

Optimization of one or more system properties is easier in centralized ap-
proaches where all measurement data is collected in one place, and only one
entity makes control decisions based on that data. In decentralized approaches
where several entities make local control decisions likely it will be more difficult
to find a global optimum for system reconfiguration, since it is possible for con-
trol decisions to adversely influence each other, leading to frequent antagonistic



96 D. Weyns et al.

adaptations. Ensuring other global properties is also easier to achieve with a
centralized controller, when all data relevant to decision making is directly ac-
cessible. However, ensuring that this data is consistent in a distributed system
poses significant challenges in itself [15,19].

The scalability of systems with respect to communication can be impacted
significantly by the choice of a centralized or decentralized solution for self-
adaptation. The larger and more complex an adaptive system becomes, the more
data has to be processed to make control decisions. This data may also have to
be transmitted from the node in the network where it is gathered to the node
that hosts the decision logic. Scalability is thus impacted by at least two factors:
the amount of data that has to be processed to make control decisions, and the
amount of data that has to be transmitted across networks. In both cases, the
more data there is, the less scalable the system will be. Decentralized systems
can improve scalability if decisions can be made locally, based on data collected
from the local context, or possibly subsets of the global monitoring data. Thus
decentralization of self-adaptation functions may reduce the amount of data that
has to be transmitted, and the amount of data that has to be processed to make
decisions about adaptations. Effectively, this parallelizes adaptation decisions at
the cost of making it hard to ensure global optima.

Robustness against node and link failure is the classical domain of distributed,
replicated systems. A system with centralized control has a central control node
as a bottleneck and potential single point of failure. Decentralized systems on
the other hand will still be able to function even when some nodes and links
fail. Only the nodes affected directly by link failures or controlled by a crashed
controller will be affected in this scenario.

Responsiveness to changes needs to be considered. Different MAPE patterns
have different reaction characteristics and MAPE loops in particular patterns
may work at different time scales. For example, Rainbow (master/slave) can act
on a system within seconds, but in some cases reactions in less than a second may
be needed. To soundly organize MAPE loops hierarchically means that a loop
must act at a time scale greater than its subordinate loops. Decentralizing control
may make an adaptive system more responsive, but at the cost of producing
subobtimal adaptations.

Different administrative domains may force particular types of adaptation
control on a designer. For example, building a centralized model of the entire
system may be infeasible if the knowledge of parts of the system has to be
kept hidden (e.g., for strategic reasons). Similarly, an adaptive system may not
be able to exercise control over some parts of the system. Consider a globally
distributed data center network, where each data center may control itself, but
cannot request reconfiguration in sibling centers because they are owned by
different companies, or are under regulations of different governments. In such a
case, the particular patterns that can be used for decentralization of control will
be affected by the amount of information that is shared between the domains,
and the amount of control that one domain can influence on another.



On Patterns for Decentralized Control in Self-Adaptive Systems 97

Domain constraints may also impose restrictions on the choice of a MAPE
pattern for controlling adaptation. For example, in certain domains (e.g. bank-
ing), security or confidentiality requirements might prevent the sharing of data
needed for control decisions with a central entity. In such a case, it might be
feasible for subsystems to summarize and filter data so that no confidential data
leaks, and then pass that data on to a centralized controller. Alternatively, a re-
gional planning solution where each part of the overall system only deals with its
own confidential data is conceivable. In some domains, for example mobile net-
work applications, network interruptions and topology changes are so frequent
that centralized solutions would be infeasible. In both the above scenarios it is
infeasible or at least impractical to collect all relevant data at a central node and
thus in these scenarios a decentralized solutions are more likely to be effective.

6 Discussion

The focus of the patterns described in this chapter is on the structures of MAPE
loop components and their interactions. We have abstracted away the representa-
tion of knowledge in the patterns, how this knowledge is used and shared among
the MAPE components, and how the system components are actually deployed
on hardware. However, the ways in which knowledge is stored in the system and
exchanged among MAPE components and the actual deployment of the system
are important design concerns that will affect the applicability of the patterns.
As explained in Section 3, we have refrained from including these concerns in
the patterns since the way knowledge is treated and components are deployed
heavily depend on the characteristics of the domain. Considering these con-
cerns explicitly would increase the complexity of the descriptions of the patterns
significantly. Instead, we consider the way knowledge is stored and exchanged
between MAPE components and the distribution of the various components as
two different views in the design of a self-adaptive system, complementary to the
structured, interaction-oriented view of the patterns presented in this chapter.

In this section, we touch upon some aspects of knowledge in the design of
MAPE loops of self-adaptive systems. It is our aim to give some initial ideas
about such design decisions and their implications. Clearly, extensive research
is required to treat the aspects of knowledge and deployment in a systematic
manner. Concretely, we will look at two alternative approaches to deal with
knowledge in the hierarchical control pattern.

As we explained in Section 4, one particular objective of the hierarchical control
pattern is to manage complexity of self-adaptation by separating concerns of the
adaptation logic in the form of a hierarchy of MAPE loops. Figure 8 shows the
interactions amongMAPE loops in consecutive layers. Here, we show two possible
approaches to share knowledge among MAPE components in this pattern.

Figure 9 shows an instance of the hierarchical control pattern with individual
knowledge repositories for each MAPE loop. In this configuration, knowledge can
only be exchanged via the interactions of MAPE loops of consecutive layers. Fig-
ure 10 shows an alternative configuration with additional knowledge repositories
that are shared among MAPE loops within layers.



98 D. Weyns et al.

Fig. 9. Instance of the hierarchical control pattern with knowledge repositories per
MAPE loop

Fig. 10. Instance of the hierarchical control pattern with additional shared knowledge
repositories within layers

In the first approach, each MAPE loop maintains knowledge in a local reposi-
tory. This approach restricts the exchange of knowledge between MAPE loops of
consecutive layers. Such knowledge exchange is important, for example, to enable
higher level MAPE loops to make decisions about adaptations at lower levels.
In the second approach, MAPE loops can also exchange knowledge with siblings
using a shared knowledge repository. This approach enables MAPE loops at one
layer to coordinate adaptations without direct interference of MAPE loops at the



On Patterns for Decentralized Control in Self-Adaptive Systems 99

layer above. Shared knowledge in the form of a shared tuple space, for example,
creates a loose coupling between MAPE loops at one layer. Such an organization
may be a solution to situations where adaptations have to be realized between
managed subsystems that are connected in a very dynamic manner, e.g., in a
mobile setting.

These two example scenarios illustrate that the aspect of knowledge can be
treated in (potentially many) different ways for this particular pattern, resulting
in specific variants of the pattern that are useful for different domains with
different characteristics and specific requirements. Study of these variants for
different types of MAPE patterns is an interesting area of future research.

7 Related Work

The work on software architecture and design patterns is extensive. The series on
Pattern-Oriented Software Architecture (POSA) by Buschmann et al. [7,45,29,6],
covers fundamental patterns [7], like Reflection and patterns specific for a do-
main, e.g., resource management [29], concurrency [45], and distribution [6].
These patterns provide concrete strategies and mechanisms to address specific
architectural or implementation problems. The patterns proposed and described
in this chapter are different in that they are considering the structure and in-
teraction of MAPE loops and their components at an abstract level. On a more
concrete level, various POSA patterns are premier candidates to realize such
patterns.

Research in self-organizing systems have brought forward a number of pat-
terns for distributed decentralized computing, for instance to support replication,
which are inspired from biology [3]. Compared to the architecture-centric per-
spective presented in this chapter, the biology inspired patterns are described
from an algorithmic perspective with more precise behavioral semantics. Such
patterns are more related to the aspect of knowledge (see section 6), and are
candidates to realize particular types knowledge exchange in some of the MAPE
patterns.

There is a large body of work in designing and implementing self-adaptive
systems, and subsequent recent reflection by researchers to develop advice and
patterns for them. Gomaa and Hussein [21] have developed several software
reconfiguration patterns for dynamic evolution of software architectures. They
define a reconfiguration pattern to be a set of recurring sequences of adapta-
tion steps (e.g., stopping/starting, (un)linking, adding/removing) necessary for
ensuring consistent adaptation of a software system. To ensure the dynamic re-
placement of a component does not jeopardize the systems consistency, a recon-
figuration pattern first places the component in the quiescent state [30], before
replacing it at runtime. Subsequent to this work, several approaches have shown
the utility of reconfiguration patterns to achieve consistency during adaptation.
In [22], Gomaa et al. employ reconfiguration patterns in the context of self-
managed service-oriented software systems, while in [14], Esfahani et al. show
their utility in the design of architecture-based middleware solutions. The pat-
terns described in this chapter are different, as we have aimed to distill patterns



100 D. Weyns et al.

that result from the different compositions of MAPE components in the manag-
ing system, while reconfiguration patterns deal with ensuring the consistency of
the managed system during adaptation.

Ramirez and Cheng [42] describe a set of design patterns for building dynamic
software systems. Their patterns are at the level of software design, and aim
to facilitate the construction of a self-adaptive software system. The purpose
of patterns proposed in their work is to help engineers to better understand
alternative means of achieving runtime adaptation in the system’s design. The
patterns proposed in this chapter are at a higher level of granularity, as we
adopt an architecture-centric perspective with the aim of better understanding
the impact of decentralization on self-adaptive software systems.

Some of the co-authors have defined a formal reference model (FORMS) that
can be used to understand and reason about self-adaptive systems, formally
defining the relationships among the environment, managing system, and man-
aged system [57]. This model provides three perspectives of self-adaptive systems,
among one is a distribution perspective that offers an abstract representation
of interacting MAPE loops in terms of coordination mechanisms. Work in this
chapter concentrates on the relationships between MAPE components (which
refines the discussion in FORMS), and does not really consider in detail the
relationship between these elements and the managed system and environment.

Explicit representation of control loops in self-adaptive systems has been dis-
cussed in [23]. A UML profile for modeling control loops is presented which
allows the modeling of sensors, actuators, controller, and their interactions as
parts of the adaptation logic. They are able to model a variety of instances of
self-organizing systems with mutliple control loops. The work in this chapter
translates the abstract concept of controller in [23] into concrete patterns of in-
teracting MAPE loops, and provides a platform for discussing the trade-offs of
applying different patterns.

8 Conclusions and Challenges Ahead

In this chapter, we have laid the groundwork for consolidating knowledge on de-
centralized control in self-adaptive systems in the form of patterns of interacting
MAPE loops. We derived these patterns from their use in practice, introduced a
notation for describing them, and discussed their ramifications with respect to
certain quality attributes. This work can be used as a basis for understanding
different patterns of decentralized control by software engineers of self-adaptive
systems, and for comparing work in the field.

As this chapter represents only the start of the work on decentralization of con-
trol in self-adaptive systems, we conclude this chapter with a number of research
challenges ahead, to contribute to the research road-map in the field. We start
with more concrete challenges and move towards long term visions at the end.

Include state/knowledge. Currently, the patterns cover only structural aspects
of decentralization of control in self-adaptive systems. As an important future



On Patterns for Decentralized Control in Self-Adaptive Systems 101

challenge, data/knowledge aspects should also be covered in the patterns, includ-
ing the differentiation between global and local knowledge. In particular, different
forms of partitioning and/or (full/partial/lazy) replication of knowledge should be
seamlessly included in the MAPE patterns, as they provide another path of indi-
rect interaction between the MAPE elements. For example, one could let the com-
ponents in a hierarchical MAPE loop interact by shared knowledge as described
in section 6 or by introducing a new hybrid control pattern by using the coor-
dinated control pattern in the middle layer of the hierarchical control pattern for
achieving a similar interaction. One particularly interesting approach to including
knowledge in the patterns for decentralized control is by defining a complementary
view of the managed system that focuses on the knowledge concern.

Adding behavior and communication. The patterns presented in this chapter
focus on centralization vs. decentralization of the primary functions of self-
adaptation with MAPE loops. Future research should focus on identifying
and classifying (i) the behavior of each MAPE component (for example, fil-
tering or preprocessing monitored information to minimize data exchange; us-
ing decentralized or self-organized planning algorithms), (ii) the communication
paradigms used for the various interactions in the patterns (for example, direct
message exchange; use of a blackboard for coordination), and (iii) the specific
protocols used for communication between the MAPE components (for exam-
ple, push-pull, request-reply, negotiation). The pattern notation introduced in
this chapter could be improved by adding different connector types between the
elements to take care of items (ii) and (iii).

MAPE activities beyond sequence. In this chapter, we assume the activities in
the MAPE loop follow in sequence (i.e., Monitoring followed by Analysis, Plan-
ning, and finally Execution). It is conceivable that there may be interactions
that do not follow this logical sequence. For example, analysis and planning may
coordinate, or analysis might coordinate with monitoring to insert new monitors
or request information more or less frequently. [53] is an example in which coordi-
nation between MAPE components organized in sub-loops within a MAPE-loop
is studied. Nested loops [20] are another approach where the managed system of
the outer loop comprises the managing inner loop plus the system managed by
the inner loop. A systematic study of MAPE activities beyond a traditional se-
quence is an interesting area that should be studied further. A related challenge
is to study how the style of the managed system might have implications on the
architecture of the managing system.

Extending the architectural expressiveness of our patterns. The notation used in
this paper could be extended with a formal foundation. This would enhance the
expressiveness of the patterns and allow precise expression and reasoning about
different configurations of the patterns. Additionally, a formal model would en-
able analysis of certain properties of systems modeled with the patterns. Such
analysis is particularly important for decentralized self-adaptive systems in which



102 D. Weyns et al.

global properties are often a critical aspect of the design. One effort in this di-
rection is FORMS [57] that provides formally defined modeling elements (in the
Z language) to specify architectures of managing subsystems, allowing to rea-
son about the architectural characteristics of distributed self-adaptive software
systems. However, this approach does not support fine-grained specifications of
interacting MAPE loops.

Dealing with uncertainty. To perform proper adaptations, the managing sub-
system needs runtime models, including models of (the relevant parts) of the
managed subsystem and the environment in which the self-adaptive system is
deployed. Such models may introduce uncertainty, for example caused by non-
determinism in the environment, inconsistencies between the managed subsystem
and its runtime representation, etc. Tackling the problems related to uncertainty is
challenging [13], as the causes of uncertainty are often not under control of the de-
signer. The situation is exacerbated in decentralized self-adaptive systems, where
there is no central authority, and adaptation decisions have to taken based on par-
tial knowledge. Dealing with uncertainty in self-adaptive systems that have mul-
tiple control loops is a challenging area for future research.

Standardization. So far, the research community has focused on standardizing the
notification interfaces of sensors and effectors of managed subsystems, but ignored
communication within the MAPE loop. For instance, the Oasis standard [39] de-
fines events that are broadly understood by vendors of system management tools.
Our position of making the decentralization of control loops explicit underlines
the need for standardizing the interactions between the MAPE loop components.
That includes interactions among MAPE components within a control loop as
well as interactions between MAPE loop components of the same type of differ-
ent control loops. This will comprise interface definitions (signatures and APIs),
message formats, and protocols. The necessity of this standardization has already
been appreciated in the past, e.g., in [32] the authors standardize the communi-
cation from the A to the P component by using a standard data exchange format
(e.g., SOAP), but no comprehensive approach exists so far.

Control Theory. There are substantial theoretical foundations for understanding
control systems in other engineering domains, embodied in control theory. In this
chapter, we have defined patterns for how to assemble a particular kind of control
loop (i.e., MAPE), but we have not discussed how theories and techniques from
control theory apply to the control of self-adaptative systems. For example, it
would be desirable to describe the transfer function of a managed system. A
transfer function defines the relation between a controlled system’s input and
output, in particular how effectors affect subsequent sensor readings. Having
such a function for the control loops of self-adaptive systems would mean that
we could reason about the properties (such as stability) of the control loop being
designed. Even more so, if the transfer function is available during run-time in a
machine-processable way, this reasoning can be subject to run-time adaptation
as well. The forms that a transfer function takes in different software domains



On Patterns for Decentralized Control in Self-Adaptive Systems 103

has received scant attention. In the context of service-oriented computing, the
transfer function could relate to service level agreements (SLA): sensor readings
would be mapped to SLA values, so that the transfer function describes how
the generic control loop needs to be controlled at the effector in order to result
in the desired SLA behavior. This will probably include the mapping of certain
SLAs to particular MAPE patterns that are proven to be effective with respect
to these SLAs. Investigating how research from the models@runtime community
can inform the definition of transfer functions for software would be a good
starting point.

Adaptive coupling with mutable control patterns. Complexity theory [37] shows
that the overall properties of a complex software system are largely determined
by the internal structure and interaction of its parts and less by the function of
its individual constituents [54]. Even more so, the internal structure of a system
is formed by relationships of differing strengths between constituents. Compo-
nents with tighter connections (or coupling) cluster to sub-systems, while other
components may remain more loosely-coupled. Hence, a complex software sys-
tem provides a mixture of tightly and loosely coupled parts. As an important
consequence, the overall system properties (e.g., scalability) are determined not
only by the structure but even more so by the strength of coupling of its re-
lationships [20]. Our control patterns support different forms of coupling. For
example, the information sharing pattern provides a much looser form of cou-
pling compared to the decentralized control pattern, thus the former potentiality
scales much better than the latter.

In order to use the full potential of the extended architectural expressiveness,
e.g., with nested control loops, the outer loop should be able to control the
strength of coupling of the inner loop. This means nothing else than “switch-
ing” from one pattern to the other during operation. Future research should
investigate approaches like [41] to allow for mutable control patterns.

Pattern enumeration and application. The patterns described in the chapter do
not fully enumerate all possible decentralization patterns, and in fact the patterns
could potentially be combined in any number of ways (for example, in federated
data centers the information sharing pattern could be used to manage adaptation
between data centers, while a hierarchical pattern could be used within a data
center). Future work should look at a broader range of self-adaptive systems to
enumerate all the patterns that have been used successfully in practice.

Furthermore, understanding when it is best to use one pattern over another
should be an active area of future research. We conceive of at least three dimen-
sions that will affect the choice of pattern:

1. The desired quality attributes and the level of guarantee required for them.
For example, it may be easier to prove that global quality attributes such as
performance will be achieved in the master/slave pattern, but that scalability
would be difficult to achieve.

2. The architecture of the managed system will likely influence which patterns
are applicable. For example, a hierarchical pattern will be unlikely to work



104 D. Weyns et al.

if there is no obvious hierarchy of authority in the managed system, or ap-
plying the information sharing pattern will likely be influenced by how much
information about the managed subsystems can be shared.

3. Domain constraints may affect the choice of a particular pattern. For exam-
ple, centralizing adaptation decisions may not be possible for confidentiality
reasons or because of dynamics in the network topology. In such scenarios,
a decentralized solution may be preferable.

We expect that a better understanding of how the drivers relate to the patterns,
and how the architecture of the managed system restricts the patterns that can
be employed to manage it, will lead to more principled design of self-adaptive
systems in the future.

Acknowledgments. This chapter is based on the results of a collaborative
effort of a breakout group for and the Dagstuhl Seminar on Software Engineer-
ing or Self Adapative Systems, October, 2010. The authors would like to thank
the other participants in the breakout session for their contributions to the dis-
cussion: Schahram Dustdar, Jeff Kramer and Rick Schlichting, as well as other
attendees of the seminar.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling Dimensions of Self-
Adaptive Software Systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer,
Heidelberg (2009)

2. Arkin, R.: Bahavior-Based Robotics (1998)
3. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F.,

Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A.,
Urnes, T.: Design patterns from biology for distributed computing. ACM Trans.
Auton. Adapt. Syst. 1, 26–66 (2006)

4. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo,
M.: It service management architecture and autonomic computing. IBM Syst. J. 46,
565–581 (2007), http://dx.doi.org/10.1147/sj.463.0565

5. Brun,Y.,Medvidovic,N.:Anarchitectural style for solving computationally intensive
problemson largenetworks. In:ProceedingsofSoftwareEngineering forAdaptiveand
Self-Managing Systems (SEAMS 2007), Minneapolis, MN, USA (May 2007)

6. Buschmann,F.,Henney,K., Schmidt,D.C.:Pattern-Oriented SoftwareArchitecture,
A Pattern Language for Distributed Computing, vol. 4. Wiley, Chichester (2007)

7. Buschmann,F.,Meunier,R.,Rohnert,H., Sommerlad,P., Stal,M.: Pattern-Oriented
Software Architecture, A System of Patterns, vol. 1. Wiley, Chichester (1996)

8. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive Management of
Composite Services under Percentile-Based Service Level Agreements. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp.
381–395. Springer, Heidelberg (2010)

http://dx.doi.org/10.1147/sj.463.0565


On Patterns for Decentralized Control in Self-Adaptive Systems 105

9. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

10. Cheng, S.W., Garlan, D., Schmerl, B.R.: Evaluating the effectiveness of the rainbow
self-adaptive system. In: SEAMS, pp. 132–141 (2009)

11. Dobson, S., Denazis, S., Fernndez, A., Gati, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions Autonomous Adaptive Systems (TAAS) 1(2), 223–259 (2006)

12. Dowling, J., Cahill, V.: The K-Component Architecture Meta-model for Self-
Adaptive Software. In: Matsuoka, S. (ed.) Reflection 2001. LNCS, vol. 2192, pp.
81–88. Springer, Heidelberg (2001)

13. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: SIGSOFT FSE, pp. 234–244 (2011)

14. Esfahani, N., Malek, S.: On the Role of Architectural Styles in Improving the
Adaptation Support of Middleware Platforms. In: Babar, M.A., Gorton, I. (eds.)
ECSA 2010. LNCS, vol. 6285, pp. 433–440. Springer, Heidelberg (2010)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

16. Gambi, A., Pezzè, M., Young, M.: SLA protection models for virtualized data
centers. In: Proc. of the Int. Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS (2009)

17. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.:
Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE
Computer 37, 46–54 (2004)

18. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: 1st Workshop on Self-Healing Systems. ACM, New York
(2002)

19. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33, 51–59 (2002),
http://doi.acm.org/10.1145/564585.564601

20. Goeschka, K.M., Froihofer, L., Dustdar, S.: What soa can do for software depend-
ability. In: Workshop on Architecting Dependable Systems (WADS 2008), Sup-
plemental Proceedings of the 38th IEEE International Conference on Dependable
Systems and Networks (DSN 2008), pp. D4–D9. IEEE Computer Society (2008)

21. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of
software architectures. In: Proceedings of Fourth Working IEEE/IFIP Conference
on Software Architecture, WICSA 2004, pp. 79–88 (2004)

22. Gomaa, H., Hashimoto, K., Kim,M., Malek, S., Menascé, D.A.: Software adaptation
patterns for service-oriented architectures. In: Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, SAC 2010, pp. 462–469. ACM, New York (2010)

23. Hebig, R., Giese, H., Becker, B.: Making control loops explicit when architecting
self-adaptive systems. In: Proceeding of the Second International Workshop on
Self-organizing Architectures, SOAR 2010, pp. 21–28. ACM, New York (2010)

24. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing–degrees, mod-
els, and applications. ACM Computing Surveys 40, 7:1–7:28 (2008),
http://doi.acm.org/10.1145/1380584.1380585

http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1380584.1380585


106 D. Weyns et al.

25. IBM: An architectural blueprint for autonomic computing. Tech. rep., IBM (Jan-
uary 2006)

26. Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997),
http://dl.acm.org/citation.cfm?id=590564.590577

27. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral:
Dynamically managing power, performance, and adaptation cost in cloud infras-
tructures. In: Proceedings of the 2010, IEEE 30th International Conference on
Distributed Computing Systems, ICDCS 2010, pp. 62–73 (2010)

28. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

29. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture. Patterns for Re-
source Management, vol. 3. Wiley, Chichester (2004)

30. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Trans. Softw. Eng. 16, 1293–1306 (1990),
http://dl.acm.org/citation.cfm?id=93658.93672

31. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society,
Washington, DC (2007)

32. Leymann, F.: Combining Web Services and the Grid: Towards Adaptive Enter-
prise Applications. In: Castro, J., Teniente, E. (eds.) First International Workshop
on Adaptive and Self-Managing Enterprise Applications (ASMEA 2005) - CAiSE
Workshop, pp. 9–21. FEUP Edi cões (June 2005)

33. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control
of software systems. In: Proceedings of the 2005 Workshop on Design and Evolution
of Autonomic Application Software, DEAS 2005, pp. 1–7. ACM (2005)

34. Maes, P.: Computional reflection. Ph.D. thesis, Vrije Universiteit (1987)
35. Malek, S., Beckman, N., Mikic-Rakic, M., Medvidov́ıc, N.: A Framework for En-

suring and Improving Dependability in Highly Distributed Systems. In: de Lemos,
R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III. LNCS,
vol. 3549, pp. 173–193. Springer, Heidelberg (2005)

36. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A decentralized redeployment algo-
rithm for improving the availability of distributed systems. In: 3rd International
Conference on Component Deployment, Grenoble, France (November 2005)

37. Manson, S.M.: Simplifying complexity: a review of complexity theory. Geofo-
rum 32(3), 405–414 (2001)

38. Müller, H., Pezzè, M., Shaw, M.: Visibility of control in adaptive sys-
tems. In: Proceedings of the 2nd International Workshop on Ultra-large-scale
Software-intensive Systems, ULSSIS 2008, pp. 23–26. ACM, New York (2008),
http://doi.acm.org/10.1145/1370700.1370707

39. OASIS, http://www.oasis-open.org
40. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G.,

Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based
approach to self-adaptive software. IEEE Intelligent Systems 14, 54–62 (1999),
http://dx.doi.org/10.1109/5254.769885

41. Pereira, J., Oliveira, R.: The mutable consensus protocol. In: Proceedings of the
23rd IEEE International Symposium on Reliable Distributed Systems, pp. 218–227.
IEEE Computer Society (October 2004)

42. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adaptive
systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2010, pp. 49–58. ACM, New York
(2010)

http://dl.acm.org/citation.cfm?id=590564.590577
http://dl.acm.org/citation.cfm?id=93658.93672
http://doi.acm.org/10.1145/1370700.1370707
http://www.oasis-open.org
http://dx.doi.org/10.1109/5254.769885


On Patterns for Decentralized Control in Self-Adaptive Systems 107

43. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

44. Schloss Dagstuhl Seminar 10431, Wadern, Germany: Software Engineering for Self-
Adaptive Systems (October 2010),
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=10431

45. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture. Patterns for Concurrent and Networked Objects, vol. 2. Wiley, Chich-
ester (2000)

46. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

47. Shaw, M., Clements, P.: The golden age of software architecture. IEEE Softw. 23,
31–39 (2006), http://dl.acm.org/citation.cfm?id=1128592.1128707

48. Sykes, D., Magee, J., Kramer, J.: Flashmob: distributed adaptive self-assembly.
In: Proceeding of the 6th International Symposium on Software Engineering for
Adaptive and Self-managing Systems, SEAMS 2011, pp. 100–109. ACM, New York
(2011), http://doi.acm.org/10.1145/1988008.1988023

49. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

50. Toffetti, G., Gambi, A., Pezzè, M., Pautasso, C.: Engineering Autonomic Con-
trollers for Virtualized Web Applications. In: Benatallah, B., Casati, F., Kappel,
G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 66–80. Springer, Heidelberg
(2010)

51. Van Dyke Parunak, H., Brueckner, S.A., Sauter, J.A., Matthews, R.: Global con-
vergence of local agent behaviors. In: Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp.
305–312. ACM, New York (2005)

52. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A frame-
work for evaluating quality-driven self-adaptive software systems. In: Proceed-
ings of the 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2011, pp. 80–89. ACM, New York (2011),
http://doi.acm.org/10.1145/1988008.1988020

53. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in
self-adaptive systems. In: Proceedings of Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2011), Honolulu, Hawaii (2011)

54. Wegner, P.: Why interaction is more powerful than algorithms. Commun.
ACM 40(5), 80–91 (1997)

55. Weyns, D., Iftakhir, M.U., Malek, S., Andersson, J.: Claims and supporting evi-
dence for self-adaptive systems: A literature review. In: Proceedings of the 7th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2012. ACM, New York (2012)

56. Weyns, D., Malek, S., Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In: Proceedings of the 2010 ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2010, pp. 84–93. ACM, New York (2010),
http://doi.acm.org/10.1145/1808984.1808994

57. Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for for-
mal specification of distributed self-adaptive systems. ACM Transactions on Au-
tonomous and Adaptive Systems, Special Issue on Formal Methods for Pervasive,
Self-Aware, and Context-Aware Systems 7(1) (2012)

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=10431
http://dl.acm.org/citation.cfm?id=1128592.1128707
http://doi.acm.org/10.1145/1988008.1988023
http://doi.acm.org/10.1145/1988008.1988020
http://doi.acm.org/10.1145/1808984.1808994

	On Patterns for Decentralized Control in Self-Adaptive Systems
	Introduction
	Terminology
	Managed and Managing Subsystem
	Distribution and Decentralization

	A Notation for MAPE Patterns
	Patterns for Decentralized Control
	Coordinated Control Pattern
	Information Sharing Pattern
	Master/Slave Pattern
	Regional Planning Pattern
	Hierarchical Control Pattern

	Drivers for Selecting Control Schemas for Adaptation
	Discussion
	Related Work
	Conclusions and Challenges Ahead


